
COP 3330: Introduction Page 1 © Mark Llewellyn

COP 3330: Object-Oriented Programming
Summer 2007

Introduction to Object-Oriented Programming
Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2007

COP 3330: Introduction Page 2 © Mark Llewellyn

Another Applet Program -- StickFigureApplet.java

// A Java applet program which draws a stick figure body
import java.awt.*;
import java.applet.Applet;

public class StickFigureApplet extends Applet {

public void paint (Graphics page) {
page.drawString("A Stick Figure", 100,30);
// Head
page.drawOval(100,50,50,50);
page.drawOval(115,65,5,5); // eyes
page.drawOval(130,65,5,5);
page.drawLine(125,70,125,80); // nose
page.drawLine(120,85,130,85); // mouth
// Body
page.drawLine(125,100,125,150);
// Legs
page.drawLine(125,150,100,200);
page.drawLine(125,150,150,200);
// Hands
page.drawLine(125,125, 75,100);
page.drawLine(125,125,175,125);

} // end of paint method
} // end of class

COP 3330: Introduction Page 3 © Mark Llewellyn

Another Applet Program (cont.)

StickFigureApplet.html
<html>
<applet code=“StickFigureApplet.class" width=300 height=300>
</applet>
</html>

drawString(astring,x,y)
writes the given string starting from the <x,y> coordinate.

COP 3330: Introduction Page 4 © Mark Llewellyn

Another Applet Program (cont.)

drawLine(x1,y1,x2,y2)
draws a line from <x1,y1> to <x2,y2> coordinate.

drawOval(x,y,width,height)
draws an oval with given width and height

(if the oval were enclosed in a rectangle).

<x,y> gives the top left corner of the rectangle.

COP 3330: Introduction Page 5 © Mark Llewellyn

Output of StickFigureApplet

COP 3330: Introduction Page 6 © Mark Llewellyn

JAVA API (Application Programming Interface)

• The Java API is a set of a class libaries.

• The classes of the Java API are grouped into
packages.

• Each package contains related classes.
• A package may contain another packages too.
• We can access a class explicitly:

java.lang.System (the . separates packages
and classes).

• Or, we can access all classes in a package at the
same time: java.awt.*

COP 3330: Introduction Page 7 © Mark Llewellyn

JAVA API (cont.)

• Some packages in the Java API.
– java.lang

• general support, it is automatically imported into all Java
programs

– java.io
• perform a wide variety of input output functions

– java.awt
• graphics related stuff (awt-Abstract Windowing Toolkit)

– java.applet
• to create applets

– java.math
• mathematical functions.

.

COP 3330: Introduction Page 8 © Mark Llewellyn

The import Statement

• We can access a class by giving its full name such
as java.awt.Graphics. But we will
repeat this over and over again in our programs.

• The import statement identifies the packages
and the classes of the Java API that will be
referenced in our programs.

COP 3330: Introduction Page 9 © Mark Llewellyn

The import Statement (cont.)

import package.class
identify the particular package that will be used in
our program.
example: import java.applet.Applet

import package.*
we will be able to access all classes in that
package.
example: import java.awt.*

COP 3330: Introduction Page 10 © Mark Llewellyn

Structure of a Console Application Program

imported classes
– You should at least import classes in java.io package.

public class <your application name> {
- declarations

• you should declare all variables which will be used in your
methods

public static void main (String args[]) throws
IOException {

- declarations of local variables
- executable statements

}
other methods if they exist

}

COP 3330: Introduction Page 11 © Mark Llewellyn

Declarations

• Each declaration statement declares one or more
references (references to objects) or variables
(primitive data types).

Examples:
int x, y, z;
Graphics p1;
int A;
int b;

COP 3330: Introduction Page 12 © Mark Llewellyn

Executable Statements
• All statements which are executed during the

execution of a program
-- assignment statement
-- method call statement
-- if statement
-- while statement

Examples:
System.out.println(“Hello there, World!”);
f(1,2);
x = y+2;
if (x<1) x=x+1;

else x=x-1;

COP 3330: Introduction Page 13 © Mark Llewellyn

Structure of an Applet Program
• imported classes

– you should import at least Graphics and Applet classes

public class <your class name> extends Applet {

– declarations
• you should declare all variables which will be used in your

methods

– declarations of methods in your application
• Declarations of your own methods and the methods responding

to events.
• If a required method is needed but it is not declared, it is

inherited from Applet class. Normally the free versions we get
from Applet class.

}

COP 3330: Introduction Page 14 © Mark Llewellyn

Some Methods for Events
• Normally, you may declare following methods

(or other methods) to respond to certain events:

public void init()
– it is called when your applet is started.
-- It performs initialization of an applet.

public void paint (Graphics g)
-- it is called after the initialization.
-- it is also called automatically every time the applet

needs to be repainted.
public void destroy()

-- it is called when the applet is destroyed

COP 3330: Introduction Page 15 © Mark Llewellyn

Structure of a Method

public <its type> <its name> (<its arguments>)

{
– declarations of local variables

– executable statements
}

COP 3330: Introduction Page 16 © Mark Llewellyn

Another Simple Console Application Program

public class Example3
{ public static void main(String args[])

{
// print the city and its population.
System.out.println("The name of the city is ” + “Orlando”);
System.out.println(“Its population is “ + 900000);

// Different usage of + operator
System.out.println(“Sum of 5+4: “ + (5+4));

// Different output method – print
System.out.print(“one..”);
System.out.print(“two..”);
System.out.println(“three..”);
System.out.print(“four..”);
} // end of main

} // end of Example class

COP 3330: Introduction Page 17 © Mark Llewellyn

Another Simple Application Program (cont.)

• The operator + is a string concatenation operator.
– “abc”+”de” “abcde”
– 900000 is converted to a String (“900000”) ,

and this string is concatenated with the string
literal “Its population is”.

• The operator + is also a regular add operator for
numeric values. The + in (5+4) is a regular
addition operator for numeric values.

COP 3330: Introduction Page 18 © Mark Llewellyn

Another Simple Application Program (cont.)

• In other words, the + operator is overloaded.
• println prints its argument and moves to the

next line.
• print prints its argument and it does not move to

the next line.
• The output of our program will be:

The name of the city is Orlando
Its population is 900000
Sum of 5+4: 9
one..two..three..
four..

COP 3330: Introduction Page 19 © Mark Llewellyn

Simple IO
System.out.print(System.out.print(““A simple sentence");A simple sentence");

The other version of this method is the println method. The other version of this method is the println method.
The only difference between print and println is that println adThe only difference between print and println is that println advances vances
the cursor to the next line.the cursor to the next line.

Thus, the following three statements:Thus, the following three statements:

System.out.print("Roses are red,");System.out.print("Roses are red,");
System.out.println(" violets are blue,");System.out.println(" violets are blue,");
System.out.println("This poem is as good as new.");System.out.println("This poem is as good as new.");

would produce the following output:would produce the following output:

Roses are red, violets are blue,Roses are red, violets are blue,
This poem is as good as new. This poem is as good as new.

COP 3330: Introduction Page 20 © Mark Llewellyn

Simple Output

System.out.println(3+4);System.out.println(3+4);
Output:Output:
77

System.out.println(3+4+"= 7");System.out.println(3+4+"= 7");
Output:Output:
7=77=7

System.out.println("Hello " + "World!");System.out.println("Hello " + "World!");
Output:Output:
Hello WorldHello World

System.out.println("Answer = " + 7);System.out.println("Answer = " + 7);
Output:Output:
Answer = 7Answer = 7

COP 3330: Introduction Page 21 © Mark Llewellyn

Introduction to Objects

• Initially, we can think of an object as a
collection of services that we can tell it to
perform for us

• The services are defined by methods in a
class that defines the object

System.out.println (”Make the most of each day.");

objectobject methodmethod
Information provided to the methodInformation provided to the method

(parameters)(parameters)

COP 3330: Introduction Page 22 © Mark Llewellyn

The println and print Methods

• The System.out object provides another
service as well

• The print method is similar to the println
method, except that it does not advance to the next
line

• Therefore anything printed after a print
statement will appear on the same line

COP 3330: Introduction Page 23 © Mark Llewellyn

Variables
• A variable is a name for a location in memory
• A variable must be declared, specifying the variable's

name and the type of information that will be held in it

int total;

int count, temp, result;

Multiple variables can be created in one declarationMultiple variables can be created in one declaration

data typedata type variable namevariable name

COP 3330: Introduction Page 24 © Mark Llewellyn

Variables

• A variable can be given an initial value in the
declaration

• When a variable is referenced in a program, its
current value is used

int sum = 0;
int base = 32, max = 149;

COP 3330: Introduction Page 25 © Mark Llewellyn

Assignment
• An assignment statement changes the value of a

variable

• The assignment operator is the = sign

total = 55;

• You can only assign a value to a variable that is
consistent with the variable's declared type

• The expression on the right is evaluated and the result
is stored in the variable on the left

• The value that was in total is overwritten

COP 3330: Introduction Page 26 © Mark Llewellyn

Constants
• A constant is an identifier that is similar to a

variable except that it holds one value for its entire
existence

• The compiler will issue an error if you try to
change a constant

• In Java, we use the final modifier to declare a
constant

final int MIN_HEIGHT = 69;

• Constants:
– give names to otherwise unclear literal values
– facilitate changes to the code
– prevent inadvertent errors

COP 3330: Introduction Page 27 © Mark Llewellyn

Constants (cont.)

• A constant is similar to a variable except that they
keep the same value through their existence.

• Constants cannot be used in the left side of an
assignment statement.

• They are specified using the reserved word
final in declarations.

• Examples:
final double PI = 3.14159;

final int NUMOFSTUDENTS = 58;

COP 3330: Introduction Page 28 © Mark Llewellyn

Constants (cont.)

• As a style, we choose upper case letter for
identifiers representing constants.

• Constants are better than literals because:

– they make code more readable by giving a
name to a value.

– they facilitate easy updates in the programs
because the value is only specified in one place.

COP 3330: Introduction Page 29 © Mark Llewellyn

Data Types
• Each value in memory is associated with a specific

data type.
• Data type of a value determines:

– size of the value (how many bits) and how
these bits are interpreted.

– what kind of operations we can perform on that
data.

• A data type is defined by a set of values and the
operators you can perform on them.

• Data Types in Java:
– Primitive Data Types
– Object Data Types

COP 3330: Introduction Page 30 © Mark Llewellyn

Primitive Data Types
• There are exactly eight primitive data types in

Java
• Four of them represent integers:

– byte, short, int, long

• Two of them represent floating point numbers:
– float, double

• One of them represents characters:
– char

• And one of them represents boolean values:
– boolean

COP 3330: Introduction Page 31 © Mark Llewellyn

Type Storage Min Value Max Value

 byte 8 bits -128 127

 short 16 bits -215 215-1

 int 32 bits -231 231-1

 long 64 bits -263 263-1

 float 32 bits -3.4e+38
(-1.4e-45)

+3.4e+38
(+1.4e-45)

 double 64 bits -1.8e+308
(-4.9e-324)

+1.79e+308
(+4.9e-324)

Java numerical primitive types

They differ by the amount of the memory used to store them.
Internally, integers are represented using two’s complement representation
(discussed later).

COP 3330: Introduction Page 32 © Mark Llewellyn

Literal Assigned type

6 int (default type)
6L long
6l long
1,000,000,000 int
2.5 (or 2.5e-2) double (default type)
2.5F float
2.5f float
‘x’ char
‘\n’ char (new line)
‘\u0039’ char represented by unicode 0039
true boolean
“\tHello World!\n” String (not a primitive data type!)

COP 3330: Introduction Page 33 © Mark Llewellyn

Assignment actually assigns value to a name

myNumber=4;
firstLetterOfMyName=‘M’;
isEmpty=true;

Combination of declaration and assignment
is called definition

boolean isHappy=true;
double degree=0.0;
String s = “This is a string.”;
float x, y=4.1, z=2.2;

COP 3330: Introduction Page 34 © Mark Llewellyn

Binary Numbers

• Before we discuss the details of the primitive data
types in Java programming language, let’s review
the binary numbers.

• a sequence of 0s and 1s.
• two bits: 00 01 10 11 (four different values)
• three bits: 000 001 010 011 100 101 110 111

(eight different values)
• 8 bits (1 byte): 00000000 ... 11111111 (256

different values)
• n bits: 2n different values

COP 3330: Introduction Page 35 © Mark Llewellyn

Internal Data Representation of Integers

• Two’s complement format is used to represent
integer numbers.

• Two’s complement format representation makes
internal arithmetic processing easier.

• In Two’s complement format:
– positive numbers are represented as a straight forward

binary number.
– a negative value is represented by inverting all the bits

in the corresponding positive number, then adding 1.

COP 3330: Introduction Page 36 © Mark Llewellyn

Internal Data Representation of Integers
Example: (assume 1 byte representation)
In decimal: 6 – 4 = 2
In binary: 00000110 – 00000100 = 00000010

Using Two’s complement and addition we have:
– form the 2’s complement of 4

• 00000100 = 11111100
– perform addition

• 00000110 + 11111100 = 100000010
• overflow bit is discarded leaving: 00000010, which is the answer.

COP 3330: Introduction Page 37 © Mark Llewellyn

Internal Data Representation – More Examples

31: 00011111 11100000 + 1 = 11100001 (-31)

0: 00000000

127: 01111111 10000000 + 1 = 10000001 (-127)

1: 00000001 11111110 + 1 = 11111111 (-1)

10000000 (which number?) -128
128:10000000 01111111 + 1 = 10000000 (-128)

COP 3330: Introduction Page 38 © Mark Llewellyn

Overflow - Underflow
• If a value grows so large that it cannot be stored in

the space, this is called as OVERFLOW.
• If a value grows so small that it cannot be stored

in the space, this is called as UNDERFLOW.
• If an overflow or an underflow occurs, we will get

incorrect results (not error messages).

Overflow: Underflow:
byte x = 127; byte x = -128;
x = (byte) (x+1); x = (byte) (x-1);

value of x is –128 value of x is 127
01111111 + 00000001 = 10000000 10000000 + 11111111 =

01111111

COP 3330: Introduction Page 39 © Mark Llewellyn

Floating Point Numbers (Real Numbers)
• There are two separate floating point primitive data types.
• They differ by the amount of the memory used to store

them.

• Java treats any floating point literal as double.
– If we want to force a literal to be float: 1.2f 1.2F
– double literals: 1.2 1.2d 1.2D

151.7x10308-1.7x1030864 bitsdouble

73.4x1038-3.4x103832 bitsfloat

significant
digits

approx. max
value

approx. min
value

sizetype

COP 3330: Introduction Page 40 © Mark Llewellyn

Internal Representation of Floating Point Numbers

• Java uses the standard IEEE 754 floating point
format to represent real numbers.

float

double

sign exponent mantissa

value = sign * mantissa * 2exponent

m = 23 bitse = 8 bitss

m = 52 bitse = 11 bitss

COP 3330: Introduction Page 41 © Mark Llewellyn

Boolean
• A boolean value represents a true or false

condition.

• The reserved words true and false are only
valid values for a boolean type.

int i, j;
boolean x, y;
x = true;
y = (i < j);

COP 3330: Introduction Page 42 © Mark Llewellyn

Characters
• A char value stores a single character from

Unicode character set.

• A character set is an ordered list of characters.
Each character is represented by a sequence of
bits.

• The Unicode character set uses 16 bits per
character (65636 unique characters) and contains
international character sets from different
languages, numbers, symbols.

COP 3330: Introduction Page 43 © Mark Llewellyn

Characters (cont.)
• ASCII character set is a subset of the Unicode

character set. It uses only 8 bits (256 characters).
In fact, the first 256 characters of the Unicode
character set are ASCII characters.
– 32 space
– 48-57 0 to 9
– 65-90 A to Z
– 97-122 a to z

• Character literals:
– ‘a’ ‘A’ ‘1’ ‘0’ ‘+’
– Note that ‘1’ and 1 are different literals (character and

integer)

COP 3330: Introduction Page 44 © Mark Llewellyn

Reserved Words
• Reserved words are identifiers that have a special

meaning in a programming language.
• For example,

– public, void, class, static are reserved
words in our simple programs.

• In Java, all reserved words are lower case
identifiers (Of course we can use just lower case
letters for our own identifiers too)

• We cannot use the reserved words as our own
identifiers (i.e. we cannot use them as variables,
class names, and method names).

COP 3330: Introduction Page 45 © Mark Llewellyn

Reserved Words (cont.)

•Data declaration: boolean, float, int, char

•Loop keywords: for, while, continue

•Conditional keywords: if, else, switch

•Exceptional keywords: try, throw, catch

•Structure keywords: class, extends, implements

•Modifier and access keywords: public, private, protected

•Miscellaneous: true, null, super, this

COP 3330: Introduction Page 46 © Mark Llewellyn

/*
HelloWorld application program

*/
public class HelloWorld // Class header
{ // Start class body

public static void main(String argv[]) //main method
{

System.out.println(“HelloWorld!”);
} // end of main

} // end HelloWorld

Circled words are those that we make up ourselves

Sample Java Program - Example

COP 3330: Introduction Page 47 © Mark Llewellyn

/*
HelloWorld application program

*/
public class HelloWorld // Class header
{ // Start class body

public static void main(String argv[]) //main method
{

System.out.println(“HelloWorld!”);
} // end of main

} // end HelloWorld

Circled words are reserved for special purposes in the language
are called reserved words

Sample Java Program - Example

COP 3330: Introduction Page 48 © Mark Llewellyn

/*
HelloWorld application program

*/
public class HelloWorld // Class header
{ // Start class body

public static void main(String argv[]) //main method
{

System.out.println (“HelloWorld!”);
} // end of main

} // end HelloWorld

Sample Java Program – Example

Circled words that are not in the language, but were used by
other programmers to make the library

COP 3330: Introduction Page 49 © Mark Llewellyn

Class Libraries
• A class library is a collection of classes that we

can use when developing programs

• There is a Java standard class library that is part
of any Java development environment

• These classes are not part of the Java language per
se, but we rely on them heavily

• The System class and the String class are part
of the Java standard class library

• Other class libraries can be obtained through third
party vendors, or you can create them yourself

COP 3330: Introduction Page 50 © Mark Llewellyn

Packages
• The classes of the Java standard class library are

organized into packages
• Some of the packages in the standard class library

are:
Package

java.lang
java.applet
java.awt
javax.swing
java.net
java.util

Purpose

General support
Creating applets for the web
Graphics and graphical user interfaces
Additional graphics capabilities and components
Network communication
Utilities

COP 3330: Introduction Page 51 © Mark Llewellyn

The import Declaration Revisited
• All classes of the java.lang package are

automatically imported into all programs

• That's why we didn't have to explicitly import the
System or String classes in earlier programs

• The Random class is part of the java.util
package

• It provides methods that generate pseudo-random
numbers

• We often have to scale and shift a number into an
appropriate range for a particular purpose

COP 3330: Introduction Page 52 © Mark Llewellyn

Wrapper Classes
• For each primitive data type, there exists a wrapper class.

• A wrapper class contains the same type of data as its
corresponding primitive data type, but it represents the
information as an object (an instance of that wrapper
class).

• A wrapper class is useful when we need an object instead
of a primitive data type.

• Wrapper classes contain useful methods. For example,
Integer wrapper class contains a method to convert a
string which contains a number into its corresponding
value.

COP 3330: Introduction Page 53 © Mark Llewellyn

Wrapper Classes (cont.)

• When we talk numeric input/output, we will use
these wrapper classes.

• Wrapper Classes:

– Byte Short Integer Long Float
Double Character Boolean Void

COP 3330: Introduction Page 54 © Mark Llewellyn

An Object Data Type (String)
• Each object value is an instance of a class.
• The internal representation of an object can be more

complex.
• We will look at the object data types in detail later.
• String literals: “my name” “123”

String s1, s2;
s1 = “abc”
s2 = “defg”;

System.out.println(s1+s2)

s1

s2

abc

defg

an object of String

an object of String

COP 3330: Introduction Page 55 © Mark Llewellyn

The String Class

• Every character string is an object in Java, defined
by the String class

• Every string literal, delimited by double quotation
marks, represents a String object

• The string concatenation operator (+) is used to
append one string to the end of another

• It can also be used to append a number to a string
• A string literal cannot be broken across two lines

in a program

COP 3330: Introduction Page 56 © Mark Llewellyn

The String Class in Java
String(String str); //constructorString(String str); //constructor

char charAt(int index); char charAt(int index);

int compareTo(String str);int compareTo(String str);

String concat(String str);String concat(String str);

boolean equals(String str);boolean equals(String str);

boolean equalsIgnoreCase(String str);boolean equalsIgnoreCase(String str);

int length();int length();

String replace(char oldChar, char newChar);String replace(char oldChar, char newChar);

String substring(int offset, int endIndex);String substring(int offset, int endIndex);

String toLowerCase();String toLowerCase();

String toUpperCase();String toUpperCase();

COP 3330: Introduction Page 57 © Mark Llewellyn

String Concatenation
• The plus operator (+) is also used for arithmetic

addition
• The function that the + operator performs depends

on the type of the information on which it operates
• If both operands are strings, or if one is a string

and one is a number, it performs string
concatenation

• If both operands are numeric, it adds them
• The + operator is evaluated left to right
• Parentheses can be used to force the operation

order

COP 3330: Introduction Page 58 © Mark Llewellyn

Escape Sequences
• What if we wanted to print a double quote character?
• The following line would confuse the compiler because it

would interpret the second quote as the end of the string

System.out.println ("I said "Hello" to you.");

• An escape sequence is a series of characters that represents
a special character

• An escape sequence begins with a backslash character (\),
which indicates that the character(s) that follow should be
treated in a special way

System.out.println ("I said \"Hello\" to you.");

COP 3330: Introduction Page 59 © Mark Llewellyn

Java Escape Sequences

• Some Java escape sequences.

Escape Sequence

\b
\t
\n
\r
\"
\'
\\

Meaning

backspace
tab

newline
carriage return
double quote
single quote
backslash

COP 3330: Introduction Page 60 © Mark Llewellyn

•The type for arbitrary text
• Is not a primitive data type, but Java has String literals
• Strings are objects, represented by String class

in java.lang package

• String name;
name=new String (“ Hello World!”);

• String name=new String(“Hello World!”);

name Hello World!

declaration instantiation

constructor

The String Type in Java

COP 3330: Introduction Page 61 © Mark Llewellyn

public class StringClass
{

public static void main(String [] args)
{

String phrase=new String(“This is a class”);
String string1, string2, string3, string4;
char letter;
int length=phrase.length();
letter = phrase.charAt(5);
string1=phrase.concat(“, which manipulates strings”);
string2=string1.toUpperCase();
string3=string2.replace(‘E’, ‘X’);
string4=string3.substring(3, 30);
System.out.println(“Original string:”+phrase);
System.out.println(letter);
System.out.println(“length is”+length);

….
}

}

COP 3330: Introduction Page 62 © Mark Llewellyn

Arithmetic Expressions

• Simple Assignment Statements:
x = y + z;
x = x * 5;

• Some of Arithmetic Operators:
+ addition
- subtraction
* multiplication
/ division
% mod operator (remainder)

COP 3330: Introduction Page 63 © Mark Llewellyn

Arithmetic operators (cont.)
op1+op2 addition

op1-op2 subtraction

op1*op2 multiplication

op1/op2 division

op1%op2 modulo

• op1 and op2 can be of integer or floating-point data types
• if op1 and op2 are of the same type, the type of result will be the same
• mixed data types arithmetic promotion before evaluation
• op1 or op2 is a string + operator performs concatenation

COP 3330: Introduction Page 64 © Mark Llewellyn

Division
• If the operands of the / operator are both integers, the result

is an integer (the fractional part is truncated). If one or
more operands of the / operator are floating point numbers,
the result is a floating point number.

• The remainder operator % returns the integer remainder
after dividing the first operand by the second one. The
operands of % must be integers.

• Examples:
13 / 5 2
13.0 / 5 2.4
13 / 5.0 2.4
2 / 4 0
2.0 / 4.0 0.5
6 % 2 0
14%5 4
-14%5 -4

COP 3330: Introduction Page 65 © Mark Llewellyn

Operator Precedence
x = x + y * 5; // what is the order of

evaluation?

• Operators in the expressions are evaluated
according to the rules of precedence and
association.
– Operators with higher order precedence are evaluated

first
– If two operators have same precedence, they are

evaluated according to association rules.
– Parentheses can change the order of the evaluations.

COP 3330: Introduction Page 66 © Mark Llewellyn

Operator Precedence (cont.)
• Precedence Rules for some arithmetic operators:

+ - (unary minus and plus) right to left higher
* / % left to right
+ - left to right lower

• Examples:
x = a + b * c – d; x = ((a+(b*c))-d);

x = (a + b) * c – d; x = (((a+b)*c)-d);

x = a + b + c; x = ((a+b)+c);

COP 3330: Introduction Page 67 © Mark Llewellyn

Data Conversion
• Because Java is a strongly typed language, each data value is

associated with a particular type.
• Sometimes we may need to convert a data value of one type to

another type.
• In this conversion process, we may use loose important

information.
• A conversion between two primitive data types falls into one

of two categories:
– widening conversion – widening conversions usually do

not loose information
– narrowing conversion – narrowing conversions may loose

information
• A boolean value cannot be converted to any other primitive

type.

COP 3330: Introduction Page 68 © Mark Llewellyn

Java Widening Conversions
• In widening conversions, they often go from one type to another type

that uses more space to store the value.
• In the most of widening conversions, we do not loose information.

– we may loose information in the following widening conversions:
• int float long float long double

doublefloat

float, doublelong

long, float, doubleint

int, long, float, doublechar

int, long, float, doubleshort

short, int, long, float, doublebyte

ToFrom

COP 3330: Introduction Page 69 © Mark Llewellyn

Widening Conversions (cont.)

• A widening conversion may automatically occur:
int x; long y; double z;
y = x;

z = x + 1; // the result of the addition is converted into double

z = x + 1.0; // the value of x is converted to double, then the addition is performed.

• We may loose information in some widening conversions;
int x = 1234567891; // int is 32-bit and float is 32-bit

float y;

y = x; // we will loose some precision (7 digit precision)

COP 3330: Introduction Page 70 © Mark Llewellyn

Narrowing Conversions
• In narrowing conversions, we may loose information.
• In narrowing conversions, they often go from one type to another type

uses less space to store the value.
• We treat the conversion from byte to char as a narrowing

conversion, because we loose the negative sign of a byte value.

byte, short, char, int, long, floatdouble

byte, short, char, int, longfloat

byte, short, char, intlong

byte, short, charint

byte, shortchar

byte, charshort

charbyte

ToFrom

COP 3330: Introduction Page 71 © Mark Llewellyn

Type Conversion
• In Java, type conversions can occur in three ways:

– assignment conversion – the value of the expression can be
automatically converted into the type of the variable (if it is a
widening conversion).

– arithmetic promotion – the value of an operand of an operator in
an arithmetic expression can be automatically converted into
another type to perform that operator (if it is a widening
conversion).

– casting – we explicitly convert a type into another type using type
casting operation.

• Examples:
int x; double y; long z;
y = x; // assignment conversion
y = x + 2.0; // arithmetic promotion
x = (int) z; // casting

COP 3330: Introduction Page 72 © Mark Llewellyn

Type Conversion – More Examples

byte x=1;
x = x + 1; // type error – correct: x=(byte)(x+1);

int y; double z;
z = y + 1 + z;

int x=3;
double y;
y = x / 2;
y = x / 2.0;
y = (double) x / 2;
y = (double) (x/2);

COP 3330: Introduction Page 73 © Mark Llewellyn

Increment and Decrement Operators
• The increment operator ++ and the decrement operator --

can be applied to all integer and floating point types.
• The increment and decrement operators are unary

operators, and their arguments must be variables.
• The increment operator adds one to its argument, the

decrement operator subtracts one from its argument.
• They can be prefix or postfix operators.

– pre-increment, post-increment, pre-decrement, post-decrement
– In pre-increment and pre-decrement operations, first these

operations are performed then the value of the variable is used in
the expression.

– In post-increment and post-decrement operations, first the value of
the variable is used in the expression, then these operations are
performed.

COP 3330: Introduction Page 74 © Mark Llewellyn

Increment and Decrement Operators (cont.)

• Examples

int x=2; int y;

y = ++x * 2; x is 3, y is 6
y = x++ * 3; x is 4, y is 9
y = x-- + 1; x is 3, y is 5
y = --x + 1; x is 2, y is 3

COP 3330: Introduction Page 75 © Mark Llewellyn

Operators and Precedence Rules

R to Lassignment operators= +=14

R to Lconditional operator?:13

L to Rlogical or||12

L to Rlogical and&&11

L to Rbitwise or|10

L to Rxor^9

L to Rbitwise and&8

L to Requal, not equal== !=7

L to Rless than, less than equal, greater than, greater than equal< <= > >=6

L to Rleft shift, right shift with sign, left shift with zero<< >> >>>5

L to Raddition, subtraction+ -4

L to Rmultiplication, division, remainder* / %3

R to Lpre-increment, post-increment, unary minus and plus
bitwise complement
logical not

++ -- + -
~
!

2

L to Rpostfix increment, postfix decrement++ --1

AssociatesOperationOperatorPrecedence
Level

COP 3330: Introduction Page 76 © Mark Llewellyn

Input and Output (in Console Applications)
• Java I/O is based on input and output streams

• There are pre-defined standard streams
– System.in reading input keyboard (InputStream object)

– System.out writing output monitor (PrintStream object)

– System.err writing output (for errors) monitor (PrintStream object)

• print and println methods (defined in PrintStream class) are used to write
to the the standard output stream (System.out).

• We will get the inputs from the standard input stream (System.in).

• To read character strings, we will create a more useful object of BufferedReader
class from System.in.

BufferedReader stdin =
new BufferedReader(new InputStreamReader(System.in));

COP 3330: Introduction Page 77 © Mark Llewellyn

Simple I/O Program
// Developer: Mark Llewellyn Date: May 22, 2007
// This program will ask your name and print you a welcome message
import java.io.*;
public class WelcomeMessage
{ public static void main(String args[]) throws IOException

{
String yourName;

// Create a BufferedReader object
BufferedReader stdin = new BufferedReader(new InputStreamReader(System.in));

// print the prompt
System.out.print("Enter your name and push enter key > ");
System.out.flush();

// read the name
yourName = stdin.readLine();

// print name together with Hi
System.out.println("Hi " + yourName + “. . . Welcome to Java!!”);

}
}

COP 3330: Introduction Page 78 © Mark Llewellyn

Numeric Input
• We always read a string first, then we convert that string

into a numeric value.
String astring;
int num;
astring = stdin.readLine();
num = Integer.parseInt(astring);

• parseInt is a static method in the wrapper class
Integer which converts a string into an int value
(assuming that the string holds the digits of that integer).

• If we put space before or after the integer number, the Java
system will give an error message.

COP 3330: Introduction Page 79 © Mark Llewellyn

Numeric Input – trim()

• To able to put extra spaces before and after a numeric
value during the input, we may use trim method of String
class.
num = Integer.parseInt(astring.trim());

• trim method removes blanks in the front and the end of a
string object (creates a new String object).
String s;
s = “ 123 “;
s.trim() “123”

COP 3330: Introduction Page 80 © Mark Llewellyn

To Read a double Value
• We always read a string first, then we convert that string

into a numeric value.
String astring;
double num;
astring = stdin.readLine();
num = Double.parseDouble(astring);

• parseDouble is a static method in the wrapper class
Double which converts a string into an double value
(assuming that the string holds the digits of that double
number).

• To able to put extra spaces before and after a numeric
value during the input, we may use trim method of
String class.

num = Double.parseDouble(astring.trim());

COP 3330: Introduction Page 81 © Mark Llewellyn

Simple I/O in Applets
// Developer: Mark Llewellyn Date: May 22, 2007
// Applet version of the Welcome application on page 77

import java.applet.*;
import java.swing.*;
import java.awt.*;
import java.awt.event.*;

public class WelcomeMessageApplet extends Applet implements ActionListener
{ Label prompt,greeting; // Output areas

TextField input; // Input area
// This method will be called when the applet starts,
// and creates the required parts of the applet.
public void init() {

// Create prompt area and put it into the applet
prompt = new Label("Enter your name and push return key: ");
add(prompt);
// Create input area and put it into the applet
input = new TextField(20);
add(input);
// Create greeting area and put it into the applet
greeting = new Label("");
add(greeting);

COP 3330: Introduction Page 82 © Mark Llewellyn

Simple I/O in Applets (cont.)

// "this" (this applet) will listen the input area and

// respond the events in this area.
input.addActionListener(this);

}
// This method will be called when anytime a string is typed

// in input area and the return key is pushed.
public void actionPerformed(ActionEvent e) {

greeting.setSize(300,20);
greeting.setText("Hi " + input.getText() + “ Welcome to Java!!);
input.setText("");

}
}

COP 3330: Introduction Page 83 © Mark Llewellyn

Simple I/O in Applets (Output)

At the beginning

Before we push the return key

After we pressed the return key

COP 3330: Introduction Page 84 © Mark Llewellyn

Simple I/O in Applets (Output-cont.)

Before we push the return key

After we pushed the return key

COP 3330: Introduction Page 85 © Mark Llewellyn

Another Applet with I/O Operations
// Developer: Mark Llewellyn Date: May 22, 2007
// I/O demonstration using an applet

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
public class SumAverageApplet extends Applet implements

ActionListener
{

Label prompt; // prompt area
TextField input; // input area for positive integer
int number; // value of positive integer
int sum; // sum of all numbers
int count; // number of positive integers
double average; // average of all numbers

COP 3330: Introduction Page 86 © Mark Llewellyn

Another Applet with I/O Operations (cont.)
// Create the graphical components and initialize the variables
public void init()

{
// Create prompt and put it into the applet
prompt = new Label("Enter a positive integer and push the return key:"

);
add(prompt);
// Create input area and put it into the applet
input = new TextField(10);
add(input);
// Initialize the variables
sum = 0;
count = 0;
// this applet will listen input area and respond to the events

happening in this area
input.addActionListener(this);

}

COP 3330: Introduction Page 87 © Mark Llewellyn

Another Applet with I/O Operations (cont.)
// Respond to the events in input area
public void actionPerformed(ActionEvent e)
{ // Get the input and convert it into a number

number = Integer.parseInt(e.getActionCommand().trim());
// Evaluate the new values
sum = sum + number;
count = count + 1;
average = (double) sum / count;
input.setText("");

// show the results
repaint();

}
// Show the results
public void paint(Graphics g) {

g.drawString("SUM : " + Integer.toString(sum), 50, 50);
g.drawString("AVG : " + Double.toString(average), 50, 70);
g.drawString("COUNT : " + Integer.toString(count), 50, 90);

}
}

COP 3330: Introduction Page 88 © Mark Llewellyn

Another Applet with I/O Operations (output)

Next page

COP 3330: Introduction Page 89 © Mark Llewellyn

Another Applet with I/O Operations (output cont.)

Next page

COP 3330: Introduction Page 90 © Mark Llewellyn

Another Applet with I/O Operations (output cont.)

Next page

What happens if the user enters
a real number instead of a
positive integer?

COP 3330: Introduction Page 91 © Mark Llewellyn

What happens when we type a real number?

COP 3330: Introduction Page 92 © Mark Llewellyn

Another Applet
//Developer: Mark Llewellyn Date: May 22, 2007
// Finding the minimum of three integers -- Applet Version
import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class MinTestApplet extends Applet implements ActionListener {
TextField tNum1,tNum2,tNum3; // text fields for indegers
Button b;
Label lMinValue; // Area for the minimum number
int minValue,num1,num2,num3;
// Create fields and initialize the variables
public void init() {

// Initialize variables
minValue = 0; num1 = 0; num2 = 0; num3 = 0;
// Create input areas
b = new Button("Find Minimum"); add(b);
add(new Label("First Number: ")); tNum1=new TextField("0",10); add(tNum1);
add(new Label("Second Number: ")); tNum2=new TextField("0",10); add(tNum2);
add(new Label("Third Number: ")); tNum3=new TextField("0",10); add(tNum3);
// create output area
add(new Label("Minimum Value: ")); lMinValue=new Label("0"); add(lMinValue);
// Listen the button
b.addActionListener(this);

}

COP 3330: Introduction Page 93 © Mark Llewellyn

Modified Applet Version (cont.)

// Respond to the events
public void actionPerformed(ActionEvent e) {

// Find the source of the event
num1 = Integer.parseInt(tNum1.getText().trim());
num2 = Integer.parseInt(tNum2.getText().trim());
num3 = Integer.parseInt(tNum3.getText().trim());

// find the minumum
if (num1<num2)

minValue = num1;
else

minValue = num2;

if (num3<minValue)
minValue = num3;

// put the new minimum into the applet
lMinValue.setText(minValue + "");

} }

COP 3330: Introduction Page 94 © Mark Llewellyn

Modified Applet Version (output)

Before pushing
button

After pushing
button

